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Abstract

The multipole-to-local (M2L) operator is the most time-consuming part of the far field computation in the fast multi-
pole method for Laplace equation. Its natural expression, though commonly used, does not respect a sharp error bound:
we here first prove the correctness of a second expression. We then propose a matrix formulation implemented with basic
linear algebra subprograms (BLAS) routines in order to speed up its computation for these two expressions. We also intro-
duce special data storages in memory to gain greater computational efficiency. This BLAS scheme is finally compared, for
uniform distributions, to other M2L improvements such as block FFT, FFT with polynomial scaling, rotations and plane
wave expansions. When considering runtime, extra memory storage, numerical stability and common precisions for
Laplace equation, the BLAS version appears as the best one.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The N-body problem in numerical simulations describes the computation of all pairwise interactions among
N bodies. The fast multipole method (FMM) developed by Greengard and Rokhlin [1,2] solves this N-body
problem for any given precision with OðNÞ runtime complexity against OðN 2Þ for the direct computation. The
potential field is indeed decomposed in a near field part, directly computed, and a far field part approximated
thanks to multipole and local expansions. First introduced for gravitational potentials in astrodynamics or
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electrostatic (coulombic) potentials in molecular dynamics [1,3], it has then been extended with different math-
ematical bases to electromagnetism [4], VLSI capacitance [5], radiosity [6], object modeling [7] and many more.
In this paper we will focus on the Laplace equation and we will therefore only consider gravitational and elec-

trostatic potentials.
In the FMM computation for Laplace equation the multipole-to-local operator (M2L), which converts a

multipole expansion into a local expansion, represents most of the runtime of the far field computation.
The operation count of this operator is OðP 4Þ in the 3D FMM, where P is the maximum degree in the expan-
sions. In order to fasten its computation, some schemes have been introduced that reduce the OðP 4Þ operation
count to OðP 3Þ, OðP 2 log PÞ or OðP 2Þ: block fast Fourier transform (FFT) [8], FFT with polynomial scaling
[9], rotations [10] and more recently plane wave expansions [11,12]. When considering operation count and
numerical stability, the plane wave improvement appears to be the best one, but to our knowledge no other
work has been published about this plane wave scheme with Laplace equation1 since the article [12]. The FFT
and rotation schemes are thus still used in this context: see [14,15].

However, on modern architectures the computation speed of the processor is much higher than the speed of
memory access. This difference leads to important waiting times in order to access data in memory: the pro-
cessor is then unused, which dramatically affects the CPU times of these simulations. This is why we propose
here a different approach: we will use highly efficient implementation techniques such as BLAS (Basic Linear
Algebra Subprograms) routines [16] to improve the runtime of the FMM. Thanks to optimal use of the dif-
ferent layers of the hierarchical memory of the computer, so that the pipelines of the floating point units are
filled at best, they indeed offer substantial runtime speedup on superscalar architectures. This speedup only
affects the constant in the OðP 4Þ notation and we keep the OðP 4Þ operation count. But in molecular dynamic
simulations for example, the required precisions for electrostatic potentials range usually between 10�5 and
10�7, so P ranges from 3 to 15 (see [3] or [17]); and for gravitational potentials that arise in astrophysics
the required precisions and the P values are even lower [18]. All these values of P are quite low in terms of
operation count, and the speedup obtained with the BLAS routines can thus exceed the one obtained with
a scheme that offers a lower operation count.

We also distinguish two different expressions of the M2L operator. Indeed, the error bound of the 3D
FMM has been historically [1,2] presented for the evaluation of potential with either finite multipole expan-
sions or finite local expansions. But, as mentioned by several authors [19,20], we have also to consider, when
implementing the FMM, that the M2L operator acts on finite multipole expansions, which means that both
multipole and local expansions are finite. When denoting P the maximum degree of the expansions, and n

(respectively j) the degrees of the multipole (respectively local) expansion terms, two different kinds of M2L

expressions can then be used. In the first one, both n and j fully range between 0 and P, whereas in the second
M2L expression we use only terms with n + j 6 P. While the first one is natural and commonly used ([19–21]),
no sharp error bound has yet been found, to our knowledge, for the corresponding summations. We will prove
that the second one, though generally less efficient, respects such sharp error bound. For these two expres-
sions, we will present the principles and the implementation features for three improvements of the M2L oper-
ator, namely block FFT, FFT with polynomial scaling and rotations, as well as for our BLAS approach. We
will then propose a detailed comparison of the memory requirements, numerical precisions and runtimes, for
uniform distributions sequentially computed, between these schemes depending on the M2L expression used.

Thanks to the FMMPART3D code (version 1.0) distributed by the MadMax Optics company,2 we will also
compare our BLAS version with the enhancement based on plane wave expansions. To our knowledge, this is
the first comparison between this scheme with plane waves and another improvement of the M2L operator
when considering the FMM for Laplace equation, since only comparisons with direct computation are given
in [11,12].

The rest of this article is organised as follows: in the next section we will introduce the formulae used in our
implementation of the FMM. We will also discuss one error bound issue and present the two different versions
of the M2L operator. We will expose and discuss the FFT enhancements in Section 2.3, the use of rotations in
1 The plane wave scheme has however been widely used for Maxwell and Helmholtz equations (see [13] for example) since the P values
are much higher in these cases.

2
http://www.madmaxoptics.com/technology/products/FMMPART3D.html.

http://www.madmaxoptics.com/technology/products/FMMPART3D.html
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Section 2.4, the plane wave scheme in Section 2.5 and the introduction of BLAS routines in Section 3. The
FFT, rotation and BLAS improvements have been implemented in a code named FMB for fast multipole with
BLAS (or fast multipole in Bordeaux) thus enabling precise comparisons among them as presented in Section
4. For almost all these sections, more details and explanations can be found in the research report [22]. The
current article has to be seen as a summary of this research report, except for the final comparison in Section
4.5 between the scheme with plane waves and our BLAS approach.

2. Multipole to local operator: presentation and current improvements

We present here the M2L operator, its mathematical formulae, the two possible expressions, their conse-
quence on the error bound and three current improvements of its operation count that we have implemented:
the block FFT, the FFT with polynomial scaling and the rotations. The plane wave scheme is also briefly
presented.

2.1. FMM presentation

We focus in this article on uniform distributions sequentially computed and refer the reader to the arti-
cles of Greengard and Rokhlin for a presentation of the FMM and especially the notions of quadtree and
octree, near and far fields, multipole and local expansions, upward and downward passes, nearest neighbors,
interaction list, and well-separateness. We denote ws the well-separateness criterion (see [20]) and use ws = 1
here, which means that two cells of the octree are well-separated provided they do not share a boundary
point. The interaction list of a cell c is then defined as the set of all children of the nearest neighbors of
the parent cell of c which are not themselves nearest neighbors of c; there is 189 members in each interaction
list.

We denote by M2M the operator that translates a multipole expansion. M2L denotes the conversion of a
multipole expansion into a local expansion, and L2L the translation of a local expansion. We consider the root
of the octree (or computational box) to be at level 0. The height of the octree is defined as its maximum level.
Moreover we use Morton ordering for the indexing of each cell: this enables a fast access to all cells in the
octree thanks to bit operations (see [3]).

We introduce now briefly the formulae used in our implementation of the FMM focusing on the M2L oper-
ator: more details and the complete formulae set can be found in [22]. We have chosen the formulae of Epton
and Dembart [23] for the clarity of the underlying theorems and their proofs, and also because they enable
elementary formulation of the M2L operator, which represents the most time-consuming part of the far field
computation, while obeying the symmetry property among the multipole and local expansion terms of oppo-
site order (see Lemma 1 at the end of the section).

In 3D space, h denotes the co-latitudinal coordinate and / the longitudinal coordinate. With �l = (�1)l if
l P 0, and �l = 1 otherwise, and P l

n denoting the associated Legendre function, our unnormalized spherical
harmonics Y l

n of degree n and order l, with n P 0 and �n 6 l 6 n, are defined by
Y l
nðh;/Þ ¼ �l

ðn� lÞ!
ðnþ lÞ!

� �1
2

P l
nðcos hÞeil/: ð1Þ
We emphasize that our spherical harmonics are considered as identically null for n < 0 or jlj > n. Like Epton
and Dembart [23], we also respectively define the Outer and Inner functions by
Ol
nðr; h;/Þ ¼

ð�1Þnijlj

Al
n

Y l
nðh;/Þ

1

rnþ1
8ðn; lÞ 2 N� Z with jlj 6 n ð2Þ
and
Il
nðr; h;/Þ ¼ i�jljAl

nY l
nðh;/Þrn 8ðn; lÞ 2 N� Z with jlj 6 n; ð3Þ
where Al
n ¼

ð�1Þnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn�lÞ!ðnþlÞ!
p .
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Letting X and X 0 be two position vectors in 3D space, we now give the main theorems that the FMM
requires: their proof can be found in [23].

Theorem 1 (Classical translation theorem). Under the assumption iXi > iX 0i, we have
3 Th
1

kX� X0k ¼
Xþ1
n¼0

Xn

l¼�n

ð�1ÞnI�l
n ðX0ÞOl

nðXÞ:
The next theorem is used to establish M2M (Outer-to-Outer) and M2L (Outer-to-Inner) operators.

Theorem 2 (Outer-to-Outer, Outer-to-Inner Laplace translation theorem). Let iXi > iX 0i, then
Ol
nðX� X0Þ ¼

Xþ1
j¼0

Xj

k¼�j

ð�1ÞjI�k
j ðX

0ÞOlþk
nþjðXÞ 8ðn; lÞ 2 N� Z with jlj 6 n:
The last theorem corresponds to the Third Addition Theorem in [2], and it is used for L2L (Inner-to-Inner)

operator.

Theorem 3 (Inner-to-Inner Laplace translation theorem)
Il
nðX� X0Þ ¼

Xn

j¼0

Xj

k¼�j

ð�1ÞjIk
j ðX0ÞIl�k

n�jðXÞ 8ðn; lÞ 2 N� Z with jlj 6 n:
Thus, according to the classical translation theorem and the Outer-to-Inner Laplace translation theorem, we have

the following expression for the M2L operator that converts multipole expansion terms into local expansion terms,

as defined in [22].

Proposition 1 (M2L operator). Let Ml
n, with n P 0, jlj 6 n, the multipole expansion terms centered in z1, the

local expansion terms Lk
j centered in z2 write
Lk
j ¼

Xþ1
n¼0

Xn

l¼�n

Ml
nO�k�l

jþn ðq; a; bÞ 8ðj; kÞ 2 N� Z with jkj 6 j;
where (q,a,b) are the spherical coordinates of the M2L vector z2 � z1.

The O�k�l
jþn ðq; a; bÞ are named the M2L transfer functions. The implementation of this formulae is named

hereafter the classic M2L. Finally, we emphasize the following property which is also valid for the Outer
and Inner functions, as well as for the multipole and local expansion terms: this enables the computation
of only terms with positive orders in multipole and local expansions.

Lemma 1 (Symmetry among orders). Y �l
n ¼ Y l

n where z denotes the complex conjugate of z 2 C.
2.2. Error bound analysis

As exposed in Section 1, the M2L operator concretely uses finite multipole expansion to compute (finite)
local expansions. When denoting P as the maximum degree of the expansions, whose terms have degrees there-
fore ranging from 0 to P, two different kinds of M2L expressions can then be used.

The first one, named M2L kernel3 with double height, corresponds to the outer sum on n, in the expression
of the M2L operator given in Proposition 1, stopping at n = P, since in this case the Ok

j terms range up to 2P.
This one is natural and commonly used, but even if some interesting works have been done to estimate the
behavior of the error induced by such M2L expression (see [19,21]), no sharp error bound has been found yet.

In the second M2L expression the outer sum on n stops at n = P � j, so that the maximum degree of the Ok
j

used is P. This is named M2L kernel with single height. This has been used for example in the DPMTA (Dis-
e kernel name has been inspired by [3].



Fig. 1. Our problem configuration.
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tributed Parallel Multipole Tree Algorithm) code developed at Duke University but the proof in the error
bound given in [3] is wrong.4 We however recommend the reading of this appendix since it presents a
worst-case error analysis similar to the one used hereafter. In particular it shows that no additional error is
introduced by the M2M operation. As explained in [2] the L2L operation does not introduce any error at
all. We can thus focus on the M2L operation.

In the following we present a sharp error bound (similar to the one presented in [3]) respected by an M2L

operator with single height kernel. It has to be noted that this error bound for single height M2L kernel was
briefly presented by White & Head-Gordon [20], but they have used double height kernel in their
implementation.

In order to introduce this error bound, we study the potential in point Z due to one single unit charge
located in Q as pictured in Fig. 1. We denote by B1 (respectively B2) the ball centered in X1 with radius r1

(respectively X2 and r2). Q is enclosed in B1, Z in B2. Moreover, denoting R = iX1 � X2i, we assume that
R > r1 + r2.

We first proceed as in [2]. Let a the angle between ‘‘vectors’’ Q and Z, r> (respectively r<) the maximum
(respectively minimum) between the norm of Q and the one of Z, and Pn the Legendre polynomials, we have
4 Eq
UðZÞ ¼ 1

kZ�Qk ¼
Xþ1
n¼0

rn
<

rnþ1
>

P nðcos aÞ: ð4Þ
Defining UP(Z) the potential with finite summation up to P, we have, since for all x 2 [�1,1], jPn(x)j 6 1,
kUðZÞ � UP ðZÞk 6
1

r> � r<

r<
r>

� �Pþ1

: ð5Þ
This leads to the following error bound

Proposition 2. 8Q 2 B1, and 8Z 2 B2, we have, under the condition R > r1 + r2
kUðZÞ � UP ðZÞk 6
1

R� ðr1 þ r2Þ
r1 þ r2

R

� �Pþ1

:

Proof. Since iZ � Qi = i((Z � X2) + (X1 � Q)) + (X2 � X1)i and since i(Z � X2) + (X1 � Q)i 6 r1 + r2, this
results directly from the inequality (5). h

We can now decompose the potential in the same way the FMM does while maintaining this error bound,
and we obtain the following theorem (whose proof is given in Appendix A).

Theorem 4. The M2L operator with single height M2L kernel strictly respects the error bound in Proposition 2.
. (C.23) in Appendix C of [3] is wrong because the composition of differential operators differs from the product of the derivatives.
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Since the error in Proposition 2 is higher than the one due to the multipole expansion terms (see [11]), and
since no additional error is introduced by the M2M and L2L operators, the error bound of the FMM with a
single height kernel M2L operator is therefore the same as in Proposition 2.

It has to be noted that the condition of well-separateness, with either ws = 1 or ws = 2, is in fact more strict
than R > r1 + r2 in order to ensure a fast enough convergence. With ws = 1 for example, we have, for a cell of
side l: r1 ¼ r2 ¼

ffiffi
3
p

2
and R P 2. Thus
kUðZÞ � UP ðZÞk 6
1

R� ðr1 þ r2Þ

ffiffiffi
3
p

2

 !Pþ1

¼ 1

R� ðr1 þ r2Þ
ð0:866ÞPþ1

:

As a result, this error bound can safely be used in the case of single height kernel in order to determine the
value of P according to the required precision. Moreover since the double height kernel, compared to the sin-
gle height kernel, only adds terms in the M2L formula, it respects at least this error bound but even adds pre-
cision with additional cost at runtime. The problem is that we cannot predict this gain in the accuracy of the
FMM, and therefore we cannot compare single and double height kernels according to the tradeoff between
theoretical accuracy and runtime. Only comparisons with practical accuracies will be possible as described in
Section 4.

We will now present, for both single and double kernel heights, several current improvements of the M2L

operator that reduce its theoretical operation count.

2.3. Fast Fourier transform

The use of fast Fourier transform (FFT) in order to speed up the M2L computation has been implemented
by Elliott and Board [3,8], based on a method originally introduced by Greengard and Rokhlin [9]. This work
was performed only for single height M2L kernel and the block version used to prevent numerical instability
as written in DPMTA has restricted the possible values of P to multiples of the block size. In [22] we have
generalized this FFT improvement to both single and double height M2L kernels and our block version
can handle any value for P.

The principle behind the use of FFT in FMM is to view the M2L operator as one 2D convolution (or cor-
relation) between two sequences. This convolution is faster computed thanks to one forward 2D FFT, one
point-wise product and one backward 2D FFT, provided that the two sequences are periodic. As presented
in [23] for M2M, we have to use additional null terms in order to build periodic sequences out of the multipole
and local expansions and the M2L transfer function: this process is named zero-padding. However, due to
large varying magnitude in the norm of the expansion terms, this FFT computation results in numerical insta-
bilities when P grows. This issue has partly been resolved by two methods: the block FFT and the polynomial

scaling scheme.

2.3.1. Block fast Fourier transform
The block FFT [8] is based on a decomposition of the expansion arrays along the degree dimension, which

implies a large-grain convolution among the blocks for the point-wise product. More details can be found in
[22] and in our implementation we have used FFTW [24] as an efficient FFT implementation.

As for operation counts the most time-consuming part of the FFT scheme is the point-wise product. While
each point-wise product runs in OðP 2Þ in the non-block version, the large-grain convolution of the block ver-
sion leads to an operation count in OðP 3Þ. This part of the computation does not match any of the standard
BLAS calls (see Section 3) and offers no data reuse: no special speedup can be expected from its
implementation.

The block version does not however ensure complete numerical stability as shown in Fig. 2(a), where we use
the L2 norm as practical error measurement:
eL2
¼

PM
i¼1 UDirðXiÞ � UFMMðXiÞð Þ2PM

i¼1UDirðXiÞ2

 !1
2

:



Fig. 2. Logarithmic L2 error for the potential according to P for both single and double height M2L kernels. Tests performed on 100,000
particles, uniformly distributed, with octrees of height 4 and 6. All particle coordinates are inside [0,1.0]. Tests run on IBM Power4 with
double precision.
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More precisely, the direct computation is used to compute the exact potential UDir of M = 1000 bodies
(chosen randomly among the N bodies), and the error generated for these M bodies is then computed
according to the L2 norm. It can be noted that the error on each force coordinate (fx, fy and fz) presents
numerical unstabilities for the same P values as the potential error here plotted. For growing values of P

these numerical instabilities may be explained by the influence of the orders in the magnitude of the norm of
the terms used: the block version is indeed only applied in the degree dimension. But numerical instabilities
are also subject to the octree height used: an increasing height indeed decreases the distance between two
cell centers in the M2L transfer function terms, as well as the distance between a cell center and a particle
location in the multipole expansion terms. Numerical instabilities hence arise when the order of magnitude
of these distances is becoming too small. Of course this behavior depends on the size of the computational
box that encloses all particles, but with a bigger computational box the numerical instabilities would nev-
ertheless appear for greater heights.

These instabilities can however be reduced with lower block size: while, for single height M2L kernel and
octree height 4, the FFT with block size 4 becomes unreliable for P greater than 14 (see Fig. 2(a)), a FFT with
block size 3 is stable until 27, but is of course slower to compute because of the higher operation count due to
the higher number of blocks. When running DPMTA (version 3.1.2p3) the instabilities appear for the same P
values and octree heights. We have also compared in [22] the runtime of the FFT improvement in DPMTA
(with fixed interaction list with ws = 1) and in our FMB code: similar CPU times were measured which val-
idates the efficiency of our implementation.

With double height M2L kernel, the maximum degree of the Ok
j is 2P: the sizes of the arrays used in the

FFT and in the point-wise product are thus roughly multiplicated by 4 (possibly thanks to zero-padding).
But since Ok

j have now degrees up to 2P, the range of magnitude is even greater and they become unstable
for even lower values of P: the FFT with double height kernel requires therefore even more the block version.
The instabilities in the block FFT, as in the non-block version, appear however for lower P values than in the
single height case: see Fig. 2(a). Finally as for operation counts, we focus in the block FFT on the large-grain
convolution which is the most time-consuming part: the ratio between single and double height kernels is here
8, which clearly does not favor the double height kernel compared to the ratio of 6 in classic M2L

computation.5
5 For classic M2L computation with single height M2L kernel, we have thanks to Lemma 1 an operation count like:
1
12 ðP þ 3ÞðP þ 1ÞðP þ 2Þ2. With double height kernel, we have: 1

2 ðP þ 2ÞðP þ 1Þ3. Therefore the ratio among the two heights is roughly 6.
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2.3.2. Fast Fourier transform with polynomial scaling

In the technical report [9], Greengard and Rokhlin have introduced another scheme to postpone the numer-
ical instabilities in the 2D FMM: the polynomial scaling. The principle is to scale all the terms with polynomial
factors, before and after the M2L computation with FFT, in order to reduce the magnitude of their norm.6

More precisely, at the octree level h we rewrite the M2L operator defined in Proposition 1 (here, with double
height kernel) as
6 We
7 In
8 Th
Lk
j

ðshÞj
¼
XP

n¼0

Xn

l¼�n

Ml
nðshÞn

O�k�l
jþn

ðshÞnþj ;
where sh is the scaling at level h. According to [9] we choose r Æ sh = 2P, where r is the norm of the M2L vec-
tor.7 With ws = 1, we have 2dh 6 r 6 3

ffiffiffi
3
p

dh, where dh is the cell side length at level h. In practice the value that
gives the more stable computations appears to be r = 4dh. We have therefore: sh ¼ P

2dh
.

After this scaling on multipole expansions and on M2L transfer functions, the non-block version of the
FFT proceeds normally and the local expansions terms are then unscaled before moving to the next octree
level of the downward pass. We thus keep the OðP 2Þ point-wise product of the non-block version, which
results in a OðP 2 log P Þ operation count for the FFT M2L computation scheme with polynomial scaling.

Fig. 2(b) shows the numerical stability of our polynomial scaling implementation. Thanks to this polyno-
mial scaling, the numerical instabilities are not anymore subject to the octree height, and the computation
scheme is more stable for growing values of P. However, as mentioned in [9] the factorial terms will always
grow larger than the polynomial ones, which results in numerical instabilities for high P values (greater than
34 for single height M2L kernel and greater than 17 for double height M2L kernel, in Fig. 2(b)). This remain-
ing instability may explain why this computation scheme has not been used in the literature since the technical
report [9] (except its reference in [8]).

2.4. Rotations

The use of rotations has already been introduced in several articles: see [10–12,15,25]. This improvement
enables the computation of the M2L operator8 in OðP 3Þ, against OðP 4Þ for their classic version. We have cho-
sen to use the formulae detailed by Gumerov and Duraiswami in [15] since: they use the same definition for
spherical harmonics, they use symmetries to speed up the computation and they focus only on the needed rota-
tions. Moreover the recurrence is performed on real numbers, and not complex ones, and is simple to initiate.
However no proof is given on the numerical stability of the formulae used.

The improvement in the use of rotations for M2L operator is based on the fact that the cost of an M2L

operation performed along the z axis is OðP 3Þ against OðP 4Þ for general M2L. This is due to a property of
the associated Legendre functions and this is valid for both single and double height M2L kernels. For a gen-
eral M2L operation whose M2L vector is not aligned with the z axis, we have first to rotate the Cartesian coor-
dinate system so that the M2L vector is along the z axis, then we perform the M2L operation, and finally we
rotate back the coordinate system. The whole procedure is worthwhile since the first rotation on multipole
expansion and the second on local expansion are both performed with OðP 3Þ operations. These rotations
are performed thanks to rotation coefficients applied to the spherical harmonics and precomputed at each level
of the octree during the downward pass. More details about the implementation of this scheme can be found
in [22].

The numerical stability of this scheme has been checked through whole FMM computations: no difference
was detected in [22] between the classic M2L scheme and the M2L scheme with rotations, for values of P up to
30, for both single and double height kernels and for several octree heights. When considering detailed oper-
ation count the ratio between single and double heights for M2L kernel appears to be roughly 20

7
which favors

the double height kernel compared to the ratio of 6 of the classic M2L implementation (see Footnote 5).
also refer the reader to [8,22] for a simple scaling without polynomial terms.
[9], r.sh = P was used in the 2D FMM, but here in the 3D FMM the factorial terms grows mainly as (2P)!
is applies also to M2M and L2L operators.
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Moreover, the memory requirements are very low since the number of rotation coefficient arrays equals the
number of M2L transfer functions (316 with ws = 1).

In [22] we have also discussed the possibility of introducing the BLAS routines (presented in Section 3) in
order to speed up the M2L computation with rotations, but no efficient solution was found: while the rota-
tions of multipole and local expansions cannot be written as matrix–vector products, the matrix–vector prod-
uct corresponding to the M2L operation along the z axis computes too many useless terms and cannot be
extended to matrix–matrix products.
2.5. Plane waves

Another computation scheme for the M2L operator is based on plane wave expansions. It has been pre-
sented in [11] and improved in [12]. We now briefly present this scheme, and we refer the reader to these arti-
cles for more details.

The plane wave scheme is based on the following rewriting of the potential between two points X = (x,y,z)
and X 0 = (x 0,y 0,z 0), with z > z 0:
1

kX� X0k ¼
1

2p

Z 1

0

e�kðz�z0Þ
Z 2p

0

eikððx�x0Þ cos aþðy�y0Þ sin aÞ dadk;
where the double integral is estimated by quadrature formulae that depends on the required precision. Four
precisions are used in [12] (see Section 4.5 for details), and new quadrature formulae have to be written for
each new precision. These precisions correspond to theoretical error bounds ensured by the FMM. More de-
tails about the quadrature formulae can be found in [26,27].

In order to compute a given M2L operation, the source multipole expansion is first converted into a plane
wave expansion thanks to the quadrature formulae. The plane wave expansion is then translated from the cen-
ter of the multipole expansion to the center of the target local expansion, where it is finally converted into a
local expansion. This is however valid only if the error introduced by the plane wave expansions corresponds
to the error due to multipole and local expansions. The number of quadrature nodes and plane waves is thus
tied up to P and P2 (see [12]). The translation of the plane wave expansion is then performed in OðP 2Þ, which
justifies the interest of this computation scheme, and the total operation count for M2L operation grows like
OðP 3Þ þOðP 2Þ (due to conversions and possible additional rotations).

In summary of Section 2, we have shown that the single height M2L kernel, contrary to the double height
one, respects the FMM error bound which justifies its implementation. The OðP 3Þ block FFT, the OðP 2 log P Þ
FFT with polynomial scaling and the OðP 3Þ rotation scheme reduce the operation count of the M2L compu-
tation, but the two FFT enhancements, contrary to the use of rotations, require important extra memory stor-
age and may result in unpredictable numerical instabilities. In addition, the plane wave scheme is stable for all
P values and presents a low OðP 3Þ þOðP 2Þ operation count. We will now propose an alternative to speed up
the M2L computation.
3. Multipole to local operator: implementation with BLAS routines

The basic linear algebra subprograms (BLAS) (see [16,28,29]) are a standard interface for some usual linear
algebra operations such as a dot product of 2 vectors (level 1 BLAS), a matrix–vector product (level 2 BLAS)
or a matrix–matrix product (level 3 BLAS). Optimized for the pipelines of the floating point units and for the
hierarchical memory of the computer, the BLAS routines offer an efficient implementation of these operations,
and the higher the level of the BLAS used, the higher the speedup they reach.

BLAS routines have already been used for hierarchical OðNÞ N-body algorithms by Hu and Johnsson [30]
with Anderson’s method [31] which uses different expansions than the FMM, and hence translation/conver-
sion operators, but has the same algorithm for the upward and downward passes. Here we propose the first
BLAS implementation for the M2L operator of the FMM for both single and double height kernels. In order
to achieve the highest efficiency, we also detail a scheme with recopies that enables to use level 3 BLAS rou-
tines, and we show how to avoid these recopies thanks to new data storages in memory.
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While the original FMM formulae of Greengard and Rokhlin (see [2]) do not enable a rewriting of their
corresponding operators (M2M, M2L or L2L) as matrix–vector products, this can be easily done with the sim-
pler formulae of [3,23] or [20]. The full FMM algorithm has also been rewritten in terms of matrix operations
in [32]: here, we only focus on the rewriting of the M2L operator as a matrix–vector product.

As we compute only terms with positive orders in the local expansion, we can write each M2L operation as
the following matrix–vector product, here written for P = 2 with single height M2L kernel:
ð6Þ
The computed vector is named local vector. The matrix is named M2L transfer matrix and denoted TM2L.
With double height M2L kernel the matrix is dense: terms Ok

j with j > P do not vanish as in the single height
case. The building of this matrix, detailed in [22], is rather straightforward. The vector used is named multipole

vector: terms with negative orders have to be stored.

3.1. Implementation with level 2 BLAS routines

Our matrices are stored in column storage mode, and we use the transfer matrix in its transposed form: it is
indeed generally more efficient to compute C AT Æ B in row storage mode for A, than C A Æ B with col-
umn storage mode for A; indeed, when considering the BLAS implementation (see [33] for a default implemen-
tation), the first solution leads to less writings, with however more readings, than the second one.

3.1.1. Double height M2L kernel
The matrix TM2L is dense: the use of level 2 BLAS ZGEMV routine is therefore obvious, and this routine

will automatically optimize the computation of the matrix–vector product to the underlying superscalar archi-
tecture. In order to differentiate it from the other BLAS method that will be used later, we name it full_blas.

3.1.2. Single height M2L kernel

The matrix TM2L is now sparse: we therefore have to split the sparse matrix–vector product in several dense
block products.

We refer the reader to the BLAS literature (see [34] for example) for the underlying techniques used to fill at
best the pipelines of the floating point execution units in order to reach peak performance of the processor.
These techniques are mainly: loop ordering for best spatial and temporal locality among data, loop blocking
in order to provide maximum cache reuse, temporary copies in local arrays for problems with ‘‘leading dimen-
sions’’ of the matrices (see BLAS routine interfaces), loop unrolling, register blocking, data prefetch, etc.

In [35], it has been shown that level 3 BLAS routines can efficiently be implemented only with the GEMM

level 3 BLAS routine and a few level 2 BLAS routines. For portability purpose, as well as for simplicity, we
prefer to adopt such approach. We will thus decompose the sparse matrix–vector product corresponding to
M2L operator in several ZGEMV block products in the most efficient way. ZGEMV routine is used here since
we treat a matrix–vector product, but in Section 3.2 we will see how to use matrix–matrix products, and
ZGEMM routine will then be used as in [35]. All the optimizations recalled above will be used but left as much
as possible to the underlying (and machine dependent) ZGEMV/ZGEMM BLAS routine called. We point out
now one important fact: in our implementation of the FMM, we are free in the memory storage of the blocks
of TM2L since its construction is precomputed at each level of the octree in the downward pass of the FMM.



Fig. 3. block_blas decomposition for P = 5. (a) Decomposition with only strips: the different gray values show the different strips. (b) The
‘‘biggest upper left square’’ sub-matrix of TM2L for P = 5 is pictured with the darker gray value. (c) In the remaining sub-matrices ‘‘on the
right’’ and ‘‘below’’, whose sub-blocks are disposed in the same way as TM2L for P = 2 (see Eq. (6)), we can recursively isolate a ‘‘biggest
upper left square’’ sub-matrix.
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Therefore, most of the problems that arise when considering the leading dimension of a matrix will be irrel-
evant with our blocks. With these principles in mind, we will present an efficient block decomposition, named
block_blas, for the matrix TM2L with single height M2L kernel.

In [35], triangular matrix–matrix product was performed with ZGEMM routines thanks to a decomposi-
tion of the triangular matrix in strips. First, we proceed similarly using strips in the horizontal direction since
the transfer matrix is stored by rows, and since this leads to several traversals of the multipole vector (one for
each strip) against one single traversal on the local vector. In other words, with strips in the row direction, the
resulting blocks of the local vector are updated one after the other, whereas the corresponding data of the mul-
tipole vector may be reloaded several times during the block matrix–vector product. As the local vector is tra-
versed for updating (i.e. both reading and writing) and the multipole expansion for reading, this is more
efficient than vertical strips which lead to the contrary. In practice, our strips strictly9 respect the underlying
structure of TM2L as pictured on Fig. 3(a): each strip is separately stored and separately computed with one
dedicated call to ZGEMV routine. One obvious problem is that, as P grows, the first strips are too thin and
too long while the last ones are too thick and too short: this can prevent the BLAS routine to internally
decompose those strips according to the hierarchical memory of the computer.

But the underlying structure of TM2L can be considered as recursive for a given P. Indeed when isolating the
‘‘biggest upper left square’’ (in the number of underlying sub-blocks) sub-matrix, with half of the sub-blocks in
both the row and the column dimensions, as pictured in Fig. 3(b) and (c), we are left with one sub-matrix ‘‘on
the right’’ and another one ‘‘below’’ whose sub-blocks are disposed in the same way as TM2L for P

2

� �
. Detailed

expression of this recursion can be found in [22].
Hence we use as much as possible dense matrices (i.e. the upper left sub-matrices) which are efficiently trea-

ted by ZGEMV routine. With small values for P, which corresponds also to the terminal cases of the recur-
sion, it may be not worth isolating this dense matrix: in these cases we use our strips. The inefficiency due to
the shape of the first and the last strips is therefore minimized since we reserve the strips for the terminal cases.
The terminal value for the recursion, hereafter named sblock, will have to be determined experimentally.

3.2. Level 3 BLAS routines

Since matrix–matrix–matrix product requires OðN 2Þ memory storage relatively to OðN 3Þ operation count,
it is easier to overlap memory latency with computation of the floating point execution units with level 3 BLAS
than with level 2 BLAS, and thus to reach peak performance of the processor. We will therefore try to group
multiple M2L operations in one single matrix–matrix product.

During the downward pass, at a given level of the octree, all M2L operations that have the same M2L vec-
tor (see Proposition 1) share the same M2L transfer matrix. When considering all pairs of multipole and local
expansions that share the same M2L vector, it is thus possible to concatenate all their multipole vectors as
9 Another decomposition that uses additional zeros to obtain strips with optimal number of rows is discussed in [22].



Fig. 4. Concatenation of multipole and local expansions in order to use level 3 BLAS. The 4 M2L operations that share the same M2L

vector are computed together in one single matrix–matrix product: the corresponding multipole and local vectors are hence concatenated
in one multipole matrix and in one local matrix, both with four columns. The transfer matrix represented here is for a single height M2L

kernel.
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columns of one single multipole matrix MM. The local vectors are also concatenated according to the same
order to form one single local matrix ML. Then the matrix–matrix product ML = TM2L Æ MM computes the
corresponding M2L operations all at once as described in Fig. 4. The concatenation is easily achieved thanks
to the column storage of our matrices.

First, we will roughly consider that the best efficiency is obtained with level 3 BLAS when the maximum
number of multipole and local expansions are concatenated each time (see Section 3.2.3 for revisions of this
assertion). In the following, we will thus see how to concatenate the maximum number of multipole and local
expansions for one given M2L transfer matrix, and we will then present the implementation of this matrix–
matrix product thanks to level 3 BLAS calls.

With free-space boundary conditions10 (FBC), where all the space outside of the computational box is con-
sidered as empty, the cells located at the boundaries of the computational box, in each level, have an incom-
plete interaction list with less than 189 members for a well-separateness criterion ws = 1 (see Section 2.1). In
order to ease their computation, and for efficiency purpose, these cells with incomplete interaction list are com-
puted separately when using level 3 BLAS for M2L.

3.2.1. Computing the local expansions of cells with incomplete interaction list

With free-space boundary conditions, the ‘‘cells with incomplete interaction list’’ are all the cells whose par-
ent have at least one neighbor that is outside of the octree. In order to treat all the M2L operations for the
local expansions of such cells, we use copies of the multipole and local vectors. The M2L computation is thus
performed as ML TM2L Æ MM + ML and the columns of the local matrix are then recopied in the original
local expansions.

For a given ws value, the M2L vectors of the interaction list of a given cell are determined according to the
type of child of the cell which describes the location of the cell center relatively to the center of its father. In 3D,
there are eight different possible types of child. Some M2L vectors, but not all of them, are shared by all the
types of child. We first loop on each possible M2L vector and secondly, inside this first loop, we loop on each
type of child that matches the current M2L vector. This has been preferred to the opposite ordering of these
two loops since it leads to a greater number of vectors treated per matrix–matrix product.

3.2.2. Computing the local expansions of cells with complete interaction list

All cells with complete interaction list have the same interaction list size, and all cells of the same type of
child share exactly the same M2L vectors. This regularity enables well-suited algorithms.

The most simple uses each time recopies as in [30] in order to treat altogether the maximum number of pairs
of multipole and local expansions. Contrary to the cells with incomplete interaction list, we first loop on each
type of child and secondly loop on each M2L vector corresponding to the current type of child: see Algorithm 1.
10 Such specificity does not appear with ‘‘Periodic Boundary Conditions’’, where the computational box is periodically replicated in each
dimension.
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Algorithm 1 Scheme with recopies. VM2L denotes the set of all possible M2L vectors, T C the set of all
different types of child and TM2L(v) the M2L transfer matrix corresponding to the M2L vector v.

1: for all t 2 T C

2: Copy all local vectors in ML;
3: for all v 2 VM2L corresponding to t

4: Copy the corresponding multipole vectors in MM;
5: Perform ML = TM2L Æ MM;
6: end for

7: Copy back all the local vectors;
8: end for

Thanks to the regularity, the recopies of the local expansions can be here performed out of the second loop,
and the opposite order of the loops would lead to more copies for the local vectors while having the same num-
ber of vectors treated each time.

It is however possible to avoid the additional cost of recopies thanks to special data storages of our mul-
tipole and local vectors which are obtained through a ‘‘rearrangement’’ of these vectors in memory performed
before the downward pass. In the first data storage, named row storage and illustrated in Fig. 5, we store con-
secutively in memory all the local vectors that belong to cells of the same type of child along a row in one given
dimension of the 3D space. This is done for each row of the level, and the same storage is also done for the
multipole vectors. Note however that for local vectors, only cells with complete interaction list have their local
expansions rearranged in rows, while for the multipole expansions the rearrangement has to be performed for
all cells of the level. With such data storage, we can call a level 3 BLAS routine starting at the local vector of
the first cell of each row, with the corresponding M2L transfer matrix and the corresponding multipole vector.
It can be noted that Morton ordering (see Section 2.1) is used here in order to access cells according to the
coordinates of their center. With FBC, at level l and for a given type of child, the local expansions are hence
rearranged in (2l�1 � 2 Æ ws)2 rows of size 2l�1 � 2 Æ ws.

The size of the rows corresponds to the number of local vectors treated per level 3 BLAS call; this might be
not enough to obtain the best efficiency: for example there is only six columns at level 4. That is why we pro-
pose a second data storage, named slice storage, that stores consecutively the rows in memory in order to form
a slice and thus enables several rows to be treated with one single level 3 BLAS call. In order to have a correct
correspondence between slices of local expansions and slices of multipole expansions, we have to insert blank
Fig. 5. row storage (2D, ws = 1, level 3). The cells are indexed according to Morton ordering. Each of the four types of child has a different
gray value. The expansions of the cells with same type of child along a given row are concatenated: the four M2L operations, whose M2L

vectors are represented on the quadtree, can then be directly computed with two matrix–matrix products (level 3 BLAS) without recopies.



Fig. 6. slice storage (2D, ws = 1, level 3): see also Fig. 5. The rows of the row data storage mode are concatenated with blank boxes

(marked with stripes) in between: the matrix–matrix product now involves multipole and local matrices with six columns, against two
columns with row storage (see Fig. 5).
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boxes between rows of local expansions. These blank boxes correspond to cells not belonging to the octree
whose local vectors are computed uselessly. They are actually required to compensate the absence of the cells
with incomplete interaction list which are treated separately. With ws = 1, there is 1 blank box at the beginning
and 1 at the end of each row, as pictured in Fig. 6. We can however skip the first blank box of the slice (that is
to say, the first blank box of the first row), and also the last one. With FBC, at level l, and for each type of child,
the local expansions are rearranged in 2l�1 � 2 Æ ws slices of size (2l�1 � 2 Æ ws)2 + 2 Æ (2l�1 � 2 Æ ws) � 2. If slice

storage enables a better efficiency with the level 3 BLAS, its clear drawback is that it also performs useless
extra work due to the blank boxes.

This can even be extended to a third data storage, named level storage, resulting in concatenation of slices
so that the whole level can be computed in one single BLAS call: in this case rows of blank boxes have to be
added between each slice.

3.2.3. Implementation with level 3 BLAS routines

As in Section 3.1.1, the dense matrix–matrix product for double height M2L kernel can be directly imple-
mented with one single level 3 BLAS call: the ZGEMM routine.

For single height M2L kernel the decomposition proposed in Section 3.1.2 is also valid with matrix–matrix
products when replacing ZGEMV routine by ZGEMM one. However, we have to face a new constraint since
we have several level 3 BLAS calls per matrix–matrix product: if all the columns of the multipole or local
matrix cannot be stored in a level of the hierarchical memory (cache L1, L2 or even L3), or need more memory
pages than the TLB (Translation Lookaside Buffer) can address, the whole matrix would have to be reloaded
at each BLAS call. A matrix with NbExp expansions is therefore split in sub-matrices with a constant number
of columns, namely NbExpmax, and the same number of rows as the original matrix as described in Fig. 7: each
sub-matrix is then treated separately. This decomposition of the matrix–matrix product is hereafter named
‘‘NbExpmax decomposition’’.

Optimal values for NbExpmax will be experimentally determined in Section 3.3.1.



Fig. 7. NbExpmax decomposition (max denotes NbExpmax). This matrix–matrix product is computed as several matrix–matrix products
with at most NbExpmax columns in the multipole and local matrices.
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3.3. Tests and comparisons

Performance tests have been performed in order to validate the BLAS implementation, along with its
parameters, that leads to the fastest M2L computation. These tests have been performed either on one
IBM Power3-II WH2+(375 MHz, 1.5 GFLOPS, L1 cache size: 64 KB, L2 cache size: 4 MB, and 2 GB of
memory) or on one IBM Power4+(1454 MHz, �6 GFLOPS, L1 cache size: 64 KB, L2 cache size:
1.41 MB, L3 cache size: 32 MB, and 8 GB of memory), both at LaBRI (Laboratoire Bordelais de Recherche
en Informatique, Talence, France). The number of particles used for the simulation is not usually precised
since the runtimes here measured depend only on the height of the uniform octree and on P, but of course
the height used implies a range in the number of particles that balances the near field and the far field
computations.

3.3.1. Decomposition for single height M2L kernel

In this section, we will see how we have established, for each architecture (Power3 or Power4), the best
NbExpmax value, as well as the best sblock value for the block_blas routine (see Section 3.1.2). As use of level
3 BLAS calls always improves the performances over level 2 ones (see [22]), these values have been determined
when using matrix–matrix products.

First we need to determine the optimal NbExpmax values. These are clearly machine dependent, and they
depend on P too since P determines the number of rows in the multipole matrix and in the local matrix.
Depending on the level 3 BLAS scheme used and on the level in the octree, the number of multipole
and local expansions concatenated, denoted by NbExp, differs significantly. For performance tests with dif-
ferent NbExpmax values, we have only considered NbExp values for cells with complete interaction list since
this corresponds to the majority of the matrix–matrix products performed. The Table 1 shows NbExp values
according to our different schemes for cells with complete interaction list.

In practice, tests for optimal NbExpmax values will be performed, according to P, for one single ‘‘big
enough’’ NbExp value. Indeed, as confirmed by more complete tests, higher NbExp values will have the same
optimal NbExpmax values and lower ones will not need such decomposition. Generally 2744 or 958 are suffi-
cient: see for example Fig. 8. Moreover, results have shown that NbExpmax is mainly independent from sblock:
when splitting both multipole and local matrices according to NbExpmax, the sub-matrices size depends indeed
only on P (for the number of rows) and NbExpmax (for the number of columns): see Fig. 7.

Besides, the optimal sblock values, which depend on P and on the machine used, were searched between 1
and P. For low values of P, the best sblock values equal P, which means it is better to use only strips for the
Table 1
NbExp values according to our different schemes (with FBC, and ws = 1, see Section 3.2.2)

Level = 4 Level = 5 Level = 6 Level = 7

recopies 216 2744 27,000 238,328
row storage 6 14 30 62
slice storage 46 222 958 3966



Fig. 8. Gain in percentage for the full downward pass CPU times offered by a computation with NbExpmax decomposition relative to one
without NbExpmax decomposition. Tests performed on IBM Power4, using the block_blas routine (with optimal sblock) and the scheme with
recopies for an octree height equal to 5 (NbExp = 2744) and 6 (NbExp = 27,000). The corresponding values for sblock and NbExpmax are
also given.
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decomposition. But for higher values of P, the best sblock values were lower than P which justifies the recursive
decomposition: see Fig. 8.

Finally, with these optimal sblock values, the relevance of the NbExpmax decomposition is shown on Fig. 8
for the scheme with recopies. With growing octree heights, the numbers of expansions NbExp treated with one
single matrix–matrix product increases, and the gain offered by the NbExpmax decomposition increases thus
too. With row and slice storages, NbExpmax decomposition will be likewise relevant when the NbExp value
exceeds the optimal NbExpmax value.

3.3.2. Recopies and special data storages
In order to compare the scheme with recopies with row and slice storages, CPU times have been measured

on the full downward pass of the FMM. As mentioned in [30], the cost of copying vectors relatively to the cost
of the matrix–matrix product decreases for growing values of P: copies of multipoles and local expansions are
indeed performed in OðNbExp � P 2Þ while the matrix–matrix product requires OðNbExp � P 4Þ operations.
This is more obvious with double height kernel than with single height kernel since the amount of computation
for the matrix–matrix product is much more costly with double height, while the cost of recopies is the same.
Fig. 9 shows the gain of row and slice storages relative to the scheme with recopies according to different values
of P for an octree height of 6: row and slice storages offer thus better gains relative to recopies for low values of
P, and these gains are always higher for single height kernel.

These gains are also influenced by the height of the octree: with growing heights of the octree, the number
of expansions treated with one matrix–matrix product increases for row and slice storages (see Table 1) and the
proportion of blank boxes decreases for slice storage. And for low heights of the octree, the use of recopies may
sometimes be faster as in Fig. 9.

Slice storage is here more efficient than row storage because of the too small NbExp for row storage at this
height: for greater heights, row storage is a little bit faster. Moreover slice storage needs very long consecutive
memory areas that cannot be allocated for too high values of P or too high heights when memory allocation
with row storage may succeed. For these reasons we prefer row storage, and since the NbExp values enabled by
slice storage seem to be high enough, level storage has also been discarded.

At last, as mentioned in Sections 2.3 and 2.4, no BLAS routine can be applied to the FFT and rotation
improvements, and attempts to apply the scheme with recopies or row data storage have failed in improving
the performances of these computations.

Now that we have determined the best BLAS implementations, namely block_blas and full_blas (depending
on the M2L kernel height), with row data storage, we are able to practically compare them with the other M2L

improvements.
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Fig. 9. Gain in percentage offered by row and slice storages relative to the scheme with recopies for downward pass CPU times with an
octree of height 6. Tests performed on IBM Power4.
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4. Comparison of the M2L improvements

Thanks to the implementation of the schemes based on FFT, rotations and BLAS routines in our FMB
code, we can now precisely compare all these improvements of the M2L operator. The comparison with
the plane wave scheme will be done afterwards thanks to the FMMPART3D code.

4.1. Memory requirements

We first compare the memory requirements of the different schemes since it may be the first choice criterion.
We here focus only on the memory used for the expansions: the memory used for the particles remains indeed
unchanged when computing M2L operator differently. In a nutshell, M2L computation with rotations has
very low extra memory needs (see Section 2.4). BLAS computation needs multipole vectors, whose size is
roughly twice the size of the multipole expansions, and extra memory for the M2L transfer matrices, especially
with double height kernel since these matrices are dense in this case. slice data storage requires also extra mem-
ory for the blank boxes. At last M2L computation with block or non-block FFT uses bigger arrays for its mul-
tipole expansions and its M2L transfer functions: these arrays are roughly four times bigger with single height
M2L kernel and 16 times bigger with double height kernel. Besides, the polynomial scaling does not affect the
memory requirements of the non-block FFT computation. Using more detailed theoretical estimations that
can be found in [22], we have plotted in Fig. 10, for each scheme, the ratio of its memory need to the classic
M2L memory need, using an octree of height 6 and only multiples of the FFT block size.

As predicted, while the rotation requirements are almost unnoticeable, and the BLAS ones remain moderate,
FFT extra memory appear as problematic, especially for double height M2L kernel. The same ratios apply for
other FFT block sizes, and the memory requirements of the non-block FFT computation are the same for these
multiples of the FFT block size (and similar otherwise). Moreover the ratio of 2 for BLAS in the double height
kernel with high values of P is due to the dense M2L transfer matrices: for greater octree heights, this ratio
remains close to 1.5 since the number of M2L functions is constant while the number of cells in the octree grows
exponentially. At last the additional cost of the blank boxes in slice storage over row storage is very small.

4.2. CPU times for single and double heights M2L kernel

Fig. 11(a) compares the different schemes with single height M2L kernel. If the BLAS version (here with
row storage) outperforms the version with the classic M2L and the one with rotations, the block FFT and
the FFT with polynomial scaling are faster. However in this test, the FFT with block size 4 is unstable for



Fig. 10. Memory requirements of the different M2L computation schemes for acomputation
requirements).

Fig. 11. Logarithmic downward pass CPU times of the different M2L computation schemes for 1 million particles with a fixed octree
height of 5. Tests are performed on an IBM Power3 with 2 GB of memory.
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P P 14, and the one with block size 3 for P P 23. Moreover, as we will see in Section 4.4, the BLAS compu-
tation with row or slice storages is more efficient with greater octree heights.

With double height kernel, as shown in Fig. 11(b), the use of BLAS clearly outperforms all OðP 3Þ compu-
tation schemes: only the OðP 2 log P Þ FFT scheme with polynomial scaling is faster, but unstable for P > 17.
For the BLAS, we have plotted only the row data storage, but slice storage and the scheme with recopies have
similar performances. For the FFT, the block version with blocks of size 4 have been plotted; in this test, it is
only stable for P 6 8, and more stable FFT with lower block sizes are slower. Moreover, on the IBM Power3
the 2 GB of memory were insufficient for FFT of block size 4 with P > 17, and for FFT with polynomial scal-
ing with P > 18. Finally, as for single height kernel, the BLAS computations with row and slice storages
become even more efficient for greater heights of the octree (see Section 4.4).

4.3. Computational efficiency

In order to illustrate the efficiency of the BLAS versions that makes them faster than the OðP 3Þ schemes, we
present the Table 2 that shows the millions of floating point operations per seconds (MFLOPS) when com-
n octree height of 6 (ratios to classicM2L



Table 2
Computational efficiencies of the different M2L computation schemes

Single height M2L kernel Double height M2L kernel

P = 7 P = 15 P = 7 P = 15

Classic (%) 9.4 16.3 14.5 18.3
Rotations (%) 5.4 7.8 8.4 10.9
FFT with block size 4 (%) 4.5 13.0 12.4 18.4
Level 3 BLAS (%) 46.4 74.0 85.9 89.2
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puting M2L. The results are shown as percentages of the peak performance of the IBM Power3 used: 1500
MFLOPS. They have been computed with the Hardware Performance Monitor (HPM) Toolkit (version
2.4.3) as the average MFLOPS rate over all M2L computations of a full FMM computation. For level 3
BLAS, we have used block_blas and full_blas routines for respectively single and double height kernels, with
an octree of height 5 and with recopies (the additional cost of copying the expansions is not considered here
since we focus on the BLAS routine efficiency). It takes into account all cells, i.e. with and without complete
interaction list. The height of the octree does not matter for classic M2L, rotations and FFT. These results can
however not be directly compared from one row to the other: we recall here that the operations count differs!
However it clearly illustrates how efficiently the processor is used in the different implementations, and why
BLAS computations outperform in practice computation schemes with lower theoretical operation counts.

This table also indicates that our decomposition of the matrix–matrix product for single height kernel in the
block_blas routine, though satisfactory, is not optimal when compared to the full_blas routine efficiency of the
double height kernel, especially for low values of P.

4.4. Single versus double height kernels

We have already seen (see Theorem 4) that a sharp error bound has been theoretically proven only for the
single M2L height kernel. The double height M2L kernel is certainly more precise, and for a given precision, it
would therefore require a lower value for P than the single height one. But since no precise error bound is
available for double height kernel, we cannot a priori know what this lower P will be.

That is why we compare here CPU times with practical accuracies for both kernel heights. As already
exposed (see for example [20] for double height M2L kernel, and [17] for single height kernel), these practical
accuracies are better than the theoretical ones which correspond to worst-case errors. These worst-case errors
are indeed obtained with spherical regions, while we use in fact smaller cubical cells because of the octree. Like
in the articles [11,12], we choose to study the L2 error defined in Section 2.3.1. Contrary to an absolute error,
this L2 error enables indeed problem independent values, and contrary to a maximum error over all particles,
it smoothes the possible discontinuities that appear in the potential error for particles crossing cell boundaries
(see [17]). Like in Section 2.3.1, we use here 1000 randomly chosen bodies as references for the exact potential
in the L2 error computation.

For our tests, we consider a gravitational potential computed for an uniform distribution with 1 million
bodies and an octree of height 5, which results in 31 bodies per leaf in the mean. We recall that when the num-
ber of bodies per leaf increases, the part of the near field (directly computed) in the potential becomes higher
and the potential becomes thus more precise. Fig. 12 presents, for each M2L scheme, the tradeoff between
practical error and CPU times (downward pass only) with both single and double height kernels. The scales
are logarithmic, and the values of P plotted for single height kernel range from 3 to 31 with step 2, while for
double height kernel they range from 3 to 23 with a step of 1 (except for cases where the 2 GB memory are
insufficient). P = 23 with double height kernel corresponds indeed to the first accuracy below 1.0 · 10�12.

As far as classic M2L is concerned, the single height kernel is more efficient for low precisions and the dou-
ble height one for high precisions. And as theoretically justified in Sections 2.3, 2.4 and 4.3, the rotation and
BLAS computations generally favor the double height kernel, except for the low values of P where the single
height kernel is more efficient. On the other hand, the FFT improvement is generally more efficient with single
height kernel, especially with the block version. Moreover, the numerical instabilities of the block FFT scheme
with block size 4 prevent from reaching a precision below 10�7 in these tests. For the non-block FFT with



Fig. 12. Tradeoffs between practical accuracies and CPU times with single and double height kernels, for an uniform distribution with 1
million bodies and an octree height fixed to 5. Tests run on IBM Power3 with 2 GB memory.
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polynomial scaling, the memory requirements prevent from running tests with P > 17 and double height ker-
nel: this is anyway the numerical stability limit of this computation scheme (see Section 2.3.2).

Therefore we still have to compare the best of each scheme: this is done in Fig. 12 where we select the best
kernel height for each accuracy and present all the schemes on the same plot. The BLAS version is then clearly
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more efficient than all OðP 3Þ schemes. By examples, for a practical error below 1.0 · 10�6 the gain of the
BLAS over the FFT (respectively the rotations) is 42% (respectively 65%). One can also see that for the great-
est P values, the rotation scheme becomes as fast as the BLAS version: this is of course the aftermath of the
lower operation count for the rotation scheme. This comparison thus fully validates the relevance of our new
BLAS version compared to these OðP 3Þ M2L improvements.

The OðP 2 log P Þ FFT with polynomial scaling appear however always faster than our BLAS version, but its
limitations concerning memory requirements and numerical stability are also clear. The memory requirements
are even more problematic with greater octree height as shown in Fig. 13(a) and (b). Fig. 13(a) also shows that
for greater octree height the BLAS computation with row (or slice) storage becomes more efficient. Indeed,
with growing octree heights the length of rows and slices increases at the leaf level which represents most
of the runtime: the number of expansions treated in one level 3 BLAS call thus increases, as well as the effi-
ciency of the BLAS routines. In Fig. 13(a), the BLAS computation scheme is then clearly competitive with the
FFT with polynomial scaling.

Finally, we have also run tests on a Linux PC with Intel Pentium 4 processor, using the ATLAS BLAS
library (version 3.6.0) [36,37], in order to show how our results rely on the architecture used. In Fig. 13(b),
one can see that the BLAS version losts here some efficiency compared to the other computation schemes,
mainly because the ATLAS routines on Intel Pentium processors are less efficient than vendor IBM BLAS
implementation on IBM processors. Nevertheless, our BLAS version is still faster than the classic and rotation
schemes, while the FFT schemes have too high memory requirements. This therefore validates our BLAS ver-
sion on other architectures.

4.5. Comparison with plane waves

In order to compare our BLAS version with the scheme based on plane wave expansions, we will study the
CPU times of both our FMB code and the FMMPART3D code (version 1.0) according to the practical accu-
racies. This comparison has been done on the Linux PC with Intel Pentium 4 processor presented in Section
4.4. Our FMB code is compiled with GCC 4.0.4 and uses the ATLAS BLAS library. The FMMPART3D
code is available as a precompiled library (Lahey/Fujitsu Fortran 95 compiler, version 6.2).

We start by outlining that the articles [11,12] do not introduce the Outer and Inner functions (see Section
2.1): their expressions of M2M, M2L and L2L operators are thus more complicated, and therefore more
expensive than ours in terms of operation count.
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BLAS (row)  1e-08 1e-07 1e-05 1e-04 02001Downward pass (log) CPU times (seconds)FFT block 4BLAS (row)Fig. 13. Tradeoffs between practical accuracies and CPU times with single and double height kernels, for an uniform distribution and an
octree height fixed to 6.
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As for previous comparisons, we only consider here uniform distributions of particles. Like in FMM-
PART3D, we use as practical error measurement the L2 norm defined in Section 2.3.1, with direct computa-
tion used to compute the exact potential of 1000 randomly chosen bodies.

The FMMPART3D code offers the four following theoretical precisions ensured by the plane wave scheme:
1.6 · 10�3 (low), 1.3 · 10�6 (medium), 1.1 · 10�9 (high) and 1.0 · 10�12 (very high). The corresponding P values
are presented in Table 3. As usual with the FMM (see Section 4.4), we notice in the following tests that the
practical errors obtained with FMMPART3D are much lower than these theoretical error bounds.

For FMB, the values of P range from 1 to 28, with step 1, so that we cover the whole range of precisions
available in FMMPART3D. The FMB code selects the best computation scheme with level 3 BLAS routines
depending on the octree level: the row data storage mode when the level l in the octree is high enough (l P 5),
and otherwise the scheme with recopies (see Section 3.3.2).

Moreover, some algorithmic differences between the two codes have to be precised.

– With FMB, we use single height and double height M2L kernels. The single height kernel is however pre-
sented here only up to P = 15 since, as noticed in Section 4.4, the single height kernel is more efficient than
the double height one only for the low values of P. In FMMPART3D and in the articles [11,12], the choice
of the kernel height is unprecised, which suggests a double height kernel (more casual and more common).

– As far as the octree height is concerned, this one is optimally set by the user in FMB in order to balance the
near field and the far field computations. With growing values of P, the cost of the far field computation
increases, and we may have to reduce the octree height. On the other hand, FMMPART3D is an adaptive
FMM code, whose algorithm is presented in [12,38]. This algorithm imposes a maximal number of particles
per leaf in the octree: this maximum value can not be tuned by the user in FMMPART3D.

– In FMMPART3D, the operations M2M and L2L are computed thanks to a scheme with rotations in OðP 3Þ
(see Section 2.4), whereas in FMB we use the classic computation in OðP 4Þ. Nevertheless these operations
are clearly minority in the total computation cost of the FMM for uniform distributions.

Figs. 14–16 present the tradeoff between CPU times and eL2
error for both codes, and for uniform distri-

butions of 100,000, 1 million, and 3 million particles. In each figure, the four dots for FMMPART3D corre-
spond to the four available precisions. Several conclusions can be drawn from these figures.

– We first notice with Table 3 that for each precision available in FMMPART3D, the P value required to
reach (or surpass) the corresponding practical precision (that is to say the error obtained in practice) with
FMB is much lower than the P value used in FMMPART3D. Such a gap is probably due to a loss of the
FMM accuracy because of the plane wave introduction. The error generated in practice with the plane wave
expansions may be greater than the one due to the spherical harmonic expansions, even though the prac-
tical error of FMMPART3D remains of course below the theoretical error bounds. A decrease of this addi-
tional error due to the plane wave scheme could only be done at the expense of an increase in its operation
count.

– We can also remark that FMB is more efficient, with respect to FMMPART3D, when both the potential
and the force are computed (in comparison with the computation of the potential only). This can be
explained by a better implementation of our direct computation for the force, or by a more efficient com-
putation of the evaluation of the force from the local expansions. As this is not directly related to the M2L

computation, we focus on the figures where only the potential is computed.
Table 3
For each of the four precisions available in FMMPART3D: P values used in FMMPART3D and P values in FMB that enable to reach
(or surpass) the corresponding practical precision obtained with FMMPART3D

P Low Medium High Very high

FMMPART3D 10 19 29 40
FMB (double height M2L kernel) 4 8 16 26–28
FMB (single height M2L kernel) 4 14 – –



Fig. 14. Comparison between FMMPART3D and FMB for an uniform distribution of 100,000 particles.

Fig. 15. Comparison between FMMPART3D and FMB for an uniform distribution of 1 million particles.

Fig. 16. Comparison between FMMPART3D and FMB for an uniform distribution of 3 million particles.
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– As announced, the single height M2L kernel is more efficient than the double height kernel for the low val-
ues of P (concretely for 2 6 P 6 5 or 6).

– Finally, if we compare the CPU times for a given precision and for the computation of the potential only,
FMB is always better for the first precision (low), with for example a gain of 39% with P = 4 (single height
M2L kernel) in the case of 1 million particles. For the two following precisions (medium and high), FMB is
as fast as FMMPART3D, but slower for the highest precision (very high).

This perfectly illustrates the gain in performance of the BLAS computation scheme which keeps the oper-
ation count of the classic M2L computation but greatly reduces the underlying constant factor: for low and
medium values of P the best gain is offered by the BLAS routines, and the gain in operation count offered by
the plane wave scheme is crucial only for the highest values of P.

The breaks in the FMB plots correspond to decrements of the octree height. The octree heights being lower
in the case of 100,000 particles, our computation scheme with BLAS is less efficient, but the same behavior is
observed. For the cases with 1 million and 3 million particles, the octree heights are the same (with however
different decrements) and the differences in the plots are essentially due to the more important part of the
direct computation with 3 million particles. Due to compiler and licence restrictions we could not run FMM-
PART3D on other architectures with more memory (like SMP nodes11), but in this case we would have been
able to run bigger test cases with greater octree height, where our BLAS scheme would be likely to be even
more efficient (see Section 3.3.2).

As exposed in Section 1 of this paper, the common precisions for Laplace equation are lower or equal to
roughly 10�7. This corresponds to the range of P values where our FMB code is either faster than, or as fast
as, the FMMPART3D code. By the way, this may explain why the plane wave scheme has not been used with
Laplace equation since the article [12]: contrary to Maxwell and Helmholtz equations, where the P values are
high, the values of P required in Laplace equation limit the gain offered by a the operation count in
OðP 2Þ þOðP 3Þ, and the underlying constant factor of this operation count is not negligible in this case.

5. Conclusion

In this paper, we have presented an overall study of the most efficient implementation of the fast multipole
method for the serial computation of gravitational or electrostatic simulations of uniform distributions.

A detailed study of the error bound has lead us to two expressions of the M2L operator that converts a
multipole expansion into a local expansion: while the double height M2L kernel is generally more efficient
for medium and high precisions, the single height M2L kernel is faster for low precisions and is the only
one to ensure a sharp error bound. For each M2L expression, we have efficiently implemented the block

FFT, the FFT with polynomial scaling and the rotation improvements. To our knowledge, this is the first
implementation of the FFT enhancement for double height M2L kernel, and it has been shown that
numerical instabilities remain even with the block FFT. Moreover, we have given the best parameters
for the polynomial scaling of the 3D FMM, and we have determined its practical limits concerning numer-
ical stability.

As an alternative, a BLAS (Basic Linear Algebra Subprograms) version has been proposed for the dense
matrices of the double height kernel as well as for the sparse matrices of the single height one. A scheme with
recopies has first made possible the use of level 3 BLAS resulting in impressive speedups. Special data storages
for the expansions either by rows or by slices have then enabled us to avoid the additional cost of recopies,
especially for low precisions.

Memory requirement estimations and CPU times from practical simulations have been used to precisely
draw the first comparison of all these different schemes. When comparing out OðP 4Þ BLAS version with
OðP 3Þ methods, it appears that the BLAS version and the FFT improvement with blocks are the most efficient
ones. While the BLAS version is always faster in case of double height kernel, the block FFT is faster with
single height kernel for high precisions. However the memory requirements of the block FFT as well as the
11 On SMP nodes, vendor BLAS implementations are also likely to be faster than the ATLAS routines.
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remaining numerical instabilities, precisely for high precisions, limit severely the benefit it offers for runtime in
this case. When comparing the tradeoff between practical accuracy and runtime for both M2L kernel heights,
the BLAS version is then the most efficient, while introducing no numerical instabilities and low extra memory
requirements.

The OðP 2 log PÞ FFT with polynomial scaling is however generally faster than our BLAS version. But its
memory requirements limits also severely its usage, and this computation scheme is not reliable because of its
remaining numerical instabilities. Moreover, for growing octree heights our BLAS version becomes more effi-
cient, and hence as fast as the FFT with polynomial scaling.

Finally, we have also compared our BLAS computation scheme with the plane wave scheme thanks to the
FMMPART3D code: in the range of common precisions for Laplace equation in astrophysics and molecular
dynamics, the gain offered by the BLAS routines is either greater than, or equal to, the one obtained with the
plane wave scheme.

We have already extended this BLAS scheme to the adaptive version of the FMM [39], and we are currently
parallelizing it on shared and distributed memory architectures. In the near future, our BLAS implementation
may appear even more appealing in the context of heterogeneous high performance computing with special-
purpose hardware, such as Graphics Processing Units (GPU) or Cell processors. Indeed, these hardwares have
(or will have) a BLAS library whose integration in our FMB code will be straightforward. Finally, this BLAS
approach could also be extended to other potentials whose FMM operators can be written as matrix products.
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Appendix A. Proof of the Theorem 4

Proof. With the notations and assumptions of Section 2.2, we consider a multipole expansion, centered in X1,
and a local expansion, centered in X2, to express the potential at Z due to the particle in Q. Since the condition
R > r1 + r2, which guarantees the convergence of both multipole and local expansions, implies
i(Q � X1) � (Z � X2)i < iX2 � X1i, and since Il

nð�XÞ ¼ ð�1ÞnIl
nðXÞ the potential in Z writes, with the

classical translation Theorem (Theorem 1):
UðZÞ ¼
Xþ1
n¼0

Xn

l¼�n

I�l
n ððZ� X2Þ � ðQ� X1ÞÞOl

nðX2 � X1Þ:
Thanks to the Inner-to-Inner translation Theorem (Theorem 3), we obtain
UðZÞ ¼
Xþ1
n¼0

Xn

l¼�n

Xn

j¼0

Xj

k¼�j

ð�1ÞjIk
j ðQ� X1ÞI�l�k

n�j ðZ� X2ÞOl
nðX2 � X1Þ: ðA:1Þ
We emphasize here that Eq. (A.1) is just a rewriting of Eq. (4): that is why when truncating the series in Eq.
(A.1) for n > P, we obtain the same error bound as in Proposition 2. Thus we have
UP ðZÞ ¼
XP

n¼0

Xn

l¼�n

Xn

j¼0

Xj

k¼�j

ð�1ÞjI k
j ðQ� X1ÞI�l�k

n�j ðZ� X2ÞOl
nðX2 � X1Þ:
After an inversion of the two finite summations on the degrees n and j and reindexing n � j! n 0 and l + k! l 0

we obtain
UP ðZÞ ¼
XP

j¼0

Xj

k¼�j

XP�j

n0¼0

Xn0þjþk

l0¼�ðn0þjÞþk

ð�1ÞjIk
j ðQ� X1ÞI�l0

n0 ðZ� X2ÞOl0�k
n0þjðX2 � X1Þ:
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We remember here that I�l0

n0 ðxÞ imposes �n 0 6 l 0 6 n 0. In the same way, Ik
j ðxÞ imposes jkj 6 j, that is to say

j + k P 0, and k � j 6 0. Moreover,
jþ k P 0) n0 þ jþ k P n0;

k � j 6 0) �ðn0 þ jÞ þ k ¼ �n0 þ ðk � jÞ 6 �n0:
Under these conditions and after reindexing �l 0 ! l and n 0 ! n and another inversion of summations on the
degrees, we obtain
UP ðZÞ ¼
XP

n¼0

Xn

l¼�n

XP�n

j¼0

Xj

k¼�j

ð�1ÞjIk
j ðQ� X1ÞO�l�k

nþj ðX2 � X1Þ
 !

Il
nðZ� X2Þ:
For all Q in B1, the multipole expansion terms Mk
j 8ðj; kÞ 2 N� Z with jkj 6 j, being defined by

Mk
j ¼ ð�1ÞjIk

j ðQ� X1Þ, we have thus proved that
UP ðZÞ ¼
XP

n¼0

Xn

l¼�n

Ll
nIl

nðZ� X2Þ;
where the Ll
n denote the local expansion terms, centered in X2, due to the unit charge located in Q, and ob-

tained thanks to the M2L operator with single height M2L kernel applied to the multipole expansion terms
Mk

j as
Ll
n ¼

XP�n

j¼0

Xj

k¼�j

Mk
j O�l�k

nþj ðX2 � X1Þ: �
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